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As a first step in the first passage problem for passive tracer in stratified porous 
media, we consider the case of a two-dimensional system consisting of two 
layers with different convection velocities. Using a lattice generating function 
formalism and a variety of analytic and numerical techniques, we calculate the 
asymptotic behavior of the first passage time probability distribution. We show 
analytically that the asymptotic distribution is a simple exponential in time for 
any choice of the velocities. The decay constant is given in terms of the largest 
eigenvalue of an operator related to a half-space Green's function. For the 
anti-symmetric case of opposite velocities in the layers, we show that the decay 
constant for system length L crosses over from L--" behavior in the diffusive 
limit to L -~ behavior in the convective regime, where the crossover length L* 
is given in terms of the velocities. We also have formulated a general self- 
consistency relation, from which we have developed a recursive approach which 
is useful for studying the short-time behavior. 

KEY WORDS: First passage problem; convection-diffusion equation; layered 
system; asymptotic behavior. 

1. I N T R O D U C T I O N  

The  m o t i o n  o f  a pass ive  t racer  in a fluid unde r  the c o m b i n e d  ac t ion  o f  

m o l e c u l a r  diffusion and  c o n v e c t i o n  arises in a var ie ty  of  sett ings,  such as 

fluid flows t h r o u g h  p o r o u s  media ,  f ixed-bed ca ta ly t ic  reactors ,  and  the 
d i spers ion  o f  po l lu t an t  in oceans J  ~ In  m a n y  s i tua t ions ,  the  convec t i on -  

diffusion e q u a t i o n  ( C D E )  descr ib ing  the va r i a t i on  o f  t r ace r  c o n c e n t r a t i o n  

wi th  space  and  t ime becomes  i n h o m o g e n e o u s ,  i.e., the  fluid ve loc i ty  field 

a n d / o r  the diffu'sivity is n o t  a cons tan t ,  bu t  a func t ion  o f  spat ia l  posi t ion.  O n e  

obv ious  m e t h o d  in the  s tudy of  i n h o m o g e n e o u s  sys tems is a p e r t u r b a t i o n  
techniqueS2, 3). Here ,  one  s tar ts  f rom a h o m o g e n e o u s  ve r s ion  o f  the  system, 
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which usually is solvable. The velocity or diffusivity is written as a sum of 
a homogeneous and an inhomogeneous term and the appropriate quan- 
tities are expressed as expansions involving the inhomogeneous term. The 
perturbative method is not immediately applicable when the magnitude 
of the disorder is strong, as many or an infinite number of terms are 
required, but in some cases, effective-medium theories may be used for an 
approximate summation. (4) However, such techniques are certainly not 
suitable for systems whose disorder is strongly correlated in space, where 
usually only straightforward numerical simulation or, for problems with an 
appropriate geometry, network models C5) are useful. 

In this paper we are motivated by the particular case of tracer disper- 
sion in porous geological systems such as aquifers and hydrocarbon reser- 
voirs(6. 7) and by the observation that such materials are very prominently 
stratified, t8) In this context, Matheron and de Marsily tg) first observed that 
when the number of layers is effectively infinite, the velocity fluctuations 
associated with the variation in structure and permeability of the layers 
could give rise to superdiffusive tracer motion. Several authors studied 
this problem further (~~ and by now there is a fair understanding of the 
tracer probability distribution for the case of a large number of horizon- 
tally infinite layers. Unfortunately, the results do not provide concrete 
statements about the most practical configuration, involving a source and 
sink of tracer at finite separation. One would like to solve the first passage 
time problem for a large number of horizontal layers of finite extent, with 
various boundary conditions (sink or reflection) at the system edges. As a 
first step in this direction, we consider the simple case of tracer motion 
in a geometry consisting of two two-dimensional, semi-infinite layers, 
where tracer is released in the interior point and is adsorbed at the edges. 
Although a great simplification compared to the case of an infinite number 
of layers, as we shall see this problem is already sufficiently difficult that 
only an approximate solution is available. (In fact, even in the ostensibly 
elementary problem of simple diffusion in two half-spaces with different 
diffusivities, a lengthy analysis has recently appeared. (~3)) 

The analysis to follow is based on an exact generating function for- 
malism for biased random walks in the geometry of interest, and approxi- 
mation schemes to extract the asymptotic behavior. More generally, we 
hope that our methods are pertinent to the problem of transport in systems 
with "block" disorder, for inhomogeneous materials which are naturally 
modeled as a collection of finite homogeneous sub-regions placed in con- 
tact. (~4) When the size of the sub-regions is much less than that of the 
system itself, or the wavelength of any probe, the disorder is short ranged 
and perturbation techniques are appropriate, but otherwise few methods 
beyond numerical simulation are available. 
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In this paper, we address the first passage time properties of passive 
tracer which convects and diffuses in a two-layer system, which is the 
simplest nontrivial case of layered structures. The system, shown in Fig. 1, 
consists of two semi-infinite blocks occupying the two-dimensional region 
Ixl ~< L. The blocks are in physical contact, allowing tracer to pass between 
them, and inside each block different fluid flow fields convect the tracer. 
For simplicity, the tracer diffusivities are assumed to be equal. The two 
finite boundaries at x = ___ L are taken to be perfect absorbers. Tracer is 
released at some point in the interior, and the time-dependent flux at the 
boundary is computed, which in this situation is identical to the first 
passage time probability distribution. 

We begin in Section 2 with a precise formulation of the model as a 
random walk process, and by introducing appropriate generating functions, 
formulate an exact self-consistency relation for the first passage time dis- 
tribution. 2 In Section 3, in order to obtain the asymptotic behavior at long 
time, we expand the first passage time distribution in terms of the number 
of times a tracer particle has crossed the interface between the blocks 
before reaching the boundaries. We then approximately sum the expansion, 
using the central limit theorem, to obtain the asymptotic distribution. 
We show analytically that the asymptotic distribution decays as a simple 
exponential in time, for any choice of  the velocity fields, where the decay 
constant is given in terms of the largest eigenvalue of an operator which is 
related to a half-space Green's function. We estimate the decay constant for 
the special case of the "antisymmetric" model. For the limiting case of high 
velocities, we estimate the largest eigenvalue and find the decay constant 
behaves as l/L, which agrees with numerical simulations. In the opposite 
case of pure diffusion, the decay constant behaves as IlL z, in good agree- 
ment with analytic estimates and numerical simulations. In Section 4, we 
consider the behavior in the intermediate-velocity regime, using two 
methods: an expansion method about the convective limit, and a more 
general scaling argument which predicts a crossover from a diffusive to a 
convective regime as L increases. The crossover length L* is given in terms 
of the velocity, and the scaling argument is consistent with the above 
results as well as those of numerical simulations. We conclude in Section 
5, with a summary and discussion of future possibilities. In Appendix A, we 
interpret the general self-consistency condition as a recursion relation, and 
obtain an expansion useful for obtaining the short-time behavior of the first 
pasage time distribution. Appendix B solves the first passage time problem 
explicitly for the simple case of convection and diffusion in a single layer. 

-' One can study the problem using a continuous (time and/or space) random walk. However, 
that approach has not been pursued in this paper. 
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Fig. 1. System geometry: two semi-infinite blocks, y > 0 and y <~ O, with different velocities, 
with absorbing boundaries at x= ___ L. 

2. S E L F - C O N S I S T E N C Y  RELATION 

2.1. Def in i t ion of the Model  

Since the tracer mot ion  is given by the convection-diffusion equation,  
one may  equivalently think of it as a biased r andom walk on a spatial 
lattice in discrete time. Consider then a lattice of  unit spacing in the x - y  
plane, where the velocity field takes on different values in the upper  and 
lower half-planes, and where only the region - L  ~<x ~< L is relevant (see 
Fig. 1). The probabil i ty P,,(x,y) that the particle is at posit ion (x,y) at 
time n is given by the master  equat ion 

P,,+ ~(x, y ) = P x ( Y -  1 ) p y ( y -  1) P,, (x-  1, y -  1) 

+p,~(y+ 1)[I  - p y ( y +  1)] P, , (x-  1 , y +  1) 

+ [ 1 - p x ( y - -  1)] p:,(y-- 1) P.(x+ l , y - -  1) 

+ [ 1 - p _ ~ ( y +  1 ) ] [ 1 - p y ( y +  I ) ]  P.(x+ 1 , y +  1) 

+ fin+ t. off ...... '~y,.,.o (1) 
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where p.,. (p,,) are the hopping probabilities in the positive x (y) direction, 
which satisfy 

Cp,, if y/> 1 r t " I xly YJ = ], ,d (2) " otherwise k-Y x/.I, 

and where the Kronecker deltas prescribe that the particle starts from 
(Xo, Yo) at time n = 0. The master equation implies that each step is along 
the diagonal of a square, which is a particularly convenient hopping rule 
for the analysis to come, and in the limit of long time and distance, as good 
as any other. Indeed, by expanding the right-hand side in a Taylor series 
about (x, y), it is easy to see that (1) is equivalent to a convection-diffusion 
equation with diffusion coefficient 1/2 and velocity (2p.,.-1, 2p, , -1) .  
(There are also higher-order terms involving the derivatives of  px/:, which 
are not relevant in the cases considered subsequently.) 

The first passage problem corresponds to absorbing boundaries at the 
system edges, so we put P , ( x ,  y ) =  0 at x = _+ L, and define H,, ~ to be the 
probability that the particle first reaches x = _+ L at time n. Motivated by 
simplicity and previous work on the many-layer problem, we suppose the 
velocities are in the x direction, parallel to the layer boundaries, so that 
p,, =pal= 1/2. For the same reasons, we assume that the net convective bias 
or average velocity vanishes, which implies that the probability of hopping 
to the right in the upper half plane equals the probability of hopping to the 
left in the lower half-plane, or p','. = 1 _p.d.. We refer to this as the "anti- 
symmetric" model, and some results about the general case appear in 
Section 5. Lastly, in the remainder of this section, we simplify the analysis 
by further assuming p ' =  1 (and pU=0);  so that particles in the upper 
(lower) half-plane always move to the right (left), and we refer to this as 
the " + / -  model." The latter restriction is lifted in Section 4. 

2.2. Der iva t ion  of a Se l f -Cons is tency  Relat ion 

In this section, we derive some useful relations for the + / -  model. 
The master equation (1) reduces to 

P , , + l ( x , y ) =  

" ( P , , ( x -  1, y -  1) + P , , ( x -  1 , y +  1))/2, 

( P , ( x -  1, y +  1) + P , ( x +  1 , y -  1))/2, 

( P , , ( x +  1, y -  1) + P, (x  + 1 , y +  1))/2, 

y>~2 
y = 0 , 1  

y~< --1 

+ 6,+ t.o~ ....... 6y.,,o (3) 



900 Lee and Koplik 

We define the following generating functions: 

P ( x , y , z ) -  ~ P,,(x,y) z" 
n ~ O  

a+(x, ot, z ) -  ~ P(x,y,z)  o~ y 
y =  I 

0 

G (X, 0qZ)-- y' P(x,y,z) o~" 
y ~  - - o O  

Substituting Eq. (4) in Eq. (3), we obtain 

a+(x, oqz)=~ o~+ a . (x- l ,o~ ,z )  

z 
+~(P(x + 1, O,z) o~--P(x- 1, 1, z)) 

+ ~.~. xoOd '~ 
and 

C_(x,~,z)=g ~+ a_(x+l,o~,z) 

z 
+~ ( P ( x -  1, 1, z ) - -P(x+ 1, O, z) o~) 

( 4 )  

(5) 

(6) 

g+(x;x' ,oqz)=~ o~+ g+(x--1;x',oqz)+3x..~, 

I s + -  if - L < x ' < ~ x < L  
g+(x;x,oqz) ' = ( 8 )  

otherwise 

Similarly, the Green's function for the lower block (y ~< 0), is the solution of 

g_(x;x',oqz)=-~ o~+ g_(x+l;x',oqz)+3.~,.~, (9) 

(7) 

which is 

where we assume Yo/> 1 without the loss of generality. 
The functions G+ and G_ can be expressed in terms of simple Green's 

functions. We define the Green's function in the upper block (3, >1 1) to be 
the solution of 
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which is 

{ ! 2 (  1)] X'-x 
g_(x ;  x', ~x, z) = ~x +-~ 

if - - L < x < . x ' < L  

otherwise 

(lO) 

Using these Green's functions, we can express G• as 

L - - !  

z ~ g + ( x ; x ' , o q z ) [ P ( x ' + l , O , z ) o ~ - P ( x ' - l ,  1, z)] G +(x' ~ z)=-2 ,= _z  + 1 

+g+(x ;  Xo, o~, z) o? '~ (11) 

and 

L - - I  

z ~ g_ (x ;  x', ~, z ) [P(x '  -- 1, 1, z) G-(X' eA' Z)='2x,=_L+I 

- P ( x '  + 1, 0, z) ~] (12) 

There is a simple way to understand Eqs. (11 )-(12). The Green's function 
g+ (g_)  is the solution of the homogeneous convection equation Px=  1 
(0) for a particle starting from (x', 0). The second term in Eq. (11) corre- 
sponds to the original particle which starts from (x,,, Yo). The first term 
of the equation is due to the existence of the boundary. It subtracts the 
contribution of the particle [P(x,  1, z) term] which leaves the block, and 
adds the contribution of the particle [P(x, 0, z) term] which enters the 
block. The equation for the lower block, Eq. (12), has essentially the same 
structure, except that it lacks the second term due to the absence of a 
starting particle in the block. 

We are interested in the first passage properties which can be calcul- 
ated from H,~. They are related to G• by 

H+(z )  = z G  + ( L -  1, 1, z) 

H - ( z ) = z G _ ( - - L +  1, l ,z)  
(13) 

where H e ( z )  is defined to be ~.,,,~__oH,~,z ". In Eqs. (11)-(12), G• are 
expressed in terms of two unknown functions P(x, O, z) and P(x,  1, z), 
which again can be calculated from G+ themselves as follows. We expand 
Eq. (11) as a series of ~. The terms proportional to e, from the definition 
of G +(x, oL, z), are exactly P(x,  1, z) ~x. In other words, 
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z ~. (2 )" : -x ' (  x - x '  ~ P ( x ' + l , O , z )  P(x, 1, z) =~ ,~, -L + I \ ( x -  x')/2 J 

_z 
2 x'= -t_+ ~ \ ( x - - x '  + 1)/2./ 

( x_xo ) ...... 
+ + ( x - - x o + y o - 1 ) / 2  

(14) 

Similarly, P(x, 0, z) can be expressed as 

z z - '  (2)-"'--" ( x ' - x  ~ e ( x ' - l , l , z ,  P(x, O, z ) = 2 Y " . ,  =. \ ( x ' - x ) / 2 J  

,: x,_x ) 
- 2 x,=.,. \2./  \ ( x ' - x - l ) / 2  P ( x ' + l , O , z )  (15) 

where (~,) is the binomial coefficient. Here, we also define (~.)=0, if x or y 
is not a nonnegative integer, or if x < y. Thus, the problem of calculating 
the first passage property is reduced to solving the self-consistency equa- 
tions (14)-(15). This is the key result in this section, and it will later serve 
as a basis for an iteration scheme. It is not unnatural that we end up with 
self-consistent relations rather than explicit solutions. The boundary condi- 
tions we have to satisfy at the interface between the two blocks are (1) con- 
tinuity and (2) flux conservation. Since these conditions are only implicit 
[i.e., they are relations among the fields P(x, y, z)], they result in implicit 
relations between G(x, or, z), which are the self-consistency conditions. 

Unfortunately, these conditions are essentially 4 L -  2 coupled linear 
equations, which are nontrivial to solve. We have developed an iterative 
scheme useful in getting the short-time behaviors (n ~ L), which is dis- 
cussed in Appendix A. We now develop an alternative method which can 
give the information about the asymptotic (n >> L) behavior. 

3. A S Y M P T O T I C  B E H A V I O R  

3.1. Expansion of H+(z) 

We turn to an alternative method for obtaining the first passage time. 
We expand quantities in terms of the number of times the particle has 
crossed the interface between the blocks before reaching the boundary. 
Consider the + / -  model again, Eq. (3), and recall the previous definitions 
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of P(x , y , z )  and H+(z),  Eqs. (4) and (13). We now define "half-space" 
Green's functions gh_+ as 

g l + ( x ' y ' x " Y " Z ) =  ( \ ( x - x ' +  y - y ' ) / 2  - ( x - x ' +  y +  y')/2 

x,_x ) x,_x )} 
gl ' - - (x 'y 'x"Y"Z)= ( x ' - - x + y - - y ' ) / 2  ( x ' - - x + y + y ' ) / 2  

(16) 

where (~) is defined as in Eq. (15). Here, g/+ (gh_) is the Green's function 
in the upper (lower) block with absorbing boundary at y =  0 ( y =  1). Due 
to the boundary condition, the functions gt'+ do not contain contributions 
from the particles which leave the block, a property which will be useful 
subsequently. 

We define H~+)(z), the part of H+(z) corresponding to particles which 
have crossed the interface n times. Using the definition of h g +, we have 

_ Ii H~)(z) = ~ ~ g + ( L -  1, y, xo, Yo, z) (17) 
y 

where we assume Yo > 0 without loss of generality. We now calculate the 
flux of particles out of the upper block. Define P(")(x, y, z) to be the part 
of P(x, y, z) corresponding to particles which have crossed the interface n 
times. At the edge of the upper block (the y = 1 line), 

P(~ 1, z)=gl+(x, 1, Xo,Yo, z) (18) 

Half (1-p' j ,)  of these particles will jump to (x + I, 0). Therefore, the influx 
at the edge of the lower block ( y = 0  line) is 

(i) ~ P(~ 1,1, z) Pin (X, O, z ) ~  
Z 

(19) 

We define the operator T+(x, x," z) as 

z v(x+ 1, z) - ~  T+(x, x', z) v(x, z') (20) 
2 - 

x" 

where v(x, z) is a vector. Thus, Eq. (19) in operator form is 

(1) Pi, (0, z) = T_(z) U~ 1, z) (21) 

where we dropped the indices x and x'. 
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We have to know what fraction of the flux will go back to the upper 
block. We first obtain 

Again, half 
( x - l ,  1), 

Ul)(x,O,z)=~gl,_(x,O,x,O,z) (1) ,' "' Pin (x ,  0, z) (22) 
x ~ 

(p.a,) of the particles will cross the interface and jump to 

(2) .. 2 Pin (.4, 1, z ) - ~  P(l~(x + 1, 0, z )=  T+(z) P(I)(0, z) (23) 

Since H ~  ~ arises from from the walkers which have crossed the interface 
twice, its sole contribution comes from PI~ I which is 

h H ' + } ( z ) = z ~ . g + ( L - - l , y , x , l , z )  ,2~., " Pin (x , 1, z) (24) 
y X' 

We then calculate the fraction of PI, 2~ which jumps back to the lower block, 
thus completing the cycle. At the edge of the upper block, 

It X t ' (2) . P(Z)(x, l ,z)=y'g+(x, 1, 1, z) 1, z) P i n  (.x, (25) 
x'  

and half of these will jump to (x + 1, 0) 

(3) Pin (0, Z) = T ( z )  p1,2~( I, z) (26) 

The above results can be written in a more compact form. We first define 
several operators 

o ( _  (g+ .~))x..,., =-gJ+(x, 1, x', l , z )  

(g"_(z))x.x,-gh_(x, O, x', z) (27) 

o _ h t (h+(,~))x,:,. ,-z~g+(L-l,y,x, 1, z) 
3, 

in terms of which the above results can be written as 

12) Z) P i n  ( I ,  = T+(z)g~ T_(z) p1,O)(1, z) 
(28) 

H2~(z) h'+(z) (21 = Pin (l, z) 

Furthermore, by repeating the above procedure, we can show that 

(2i1 Pin (1, z)=T+(z)g~ T-(z)g+(z) 1,2i-2) P i n  ( 1, z) 

- -  +H(2i)=h + (  "7" ) Pin(2i)( l ,  z )  (29) 
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With the definitions 

u(z) = T+(z) g~ T_(z) g+(z) 

Ul(Z) = T +(z) g~ T_(z) 

we arrive at the key result of this section: 

(30) 

H+(z) = H ~ ) ( z )  + ~ h+(z) ui(z) u,(z) Pt~ z) 
i = 1  

(31) 

The validity of the expansion has been checked by comparing H+(z) 
obtained above with that obtained by numerical simulations. Details of the 
simulations will be discussed later. 

3.2. Asymptotic Form of H+ 

In this section, we derive the asymptotic form of the first passage time 
distribution, starting from Eq. (31). Recall the definition H+(z) - Z,, H'+ z". 
In general, H+(z) is an infinite-order polynomial in z, where H + ,  the 
coefficient of z", is the hitting probability at time n. We now consider the 
various terms in Eq. (31). Using Eq. (17), we can show that the degree of 
H~)(z) cannot be larger than 2L - 1. Since it does not give a contribution 
to H+(z) in the asymptotic n ~> L regime, we can ignore this term. Next, in 
the summand of the equation, the same operator u(z) has been repeatedly 
applied to a vector u'(z)U~ z). Thus, we can approximate u~(z) with 
2~(z), where 2(z) is the largest eigenvalue of u(z). If the operator in question 
is self-adjoint and diagonalizable, this approximation would surely be 
justified, at least for i~> 1 / [2 (z ) -22(z ) ] ,  where 22(Z ) is the second largest 
eigenvalue of u(z), but in this instance this step is an assumption, 
which, however, is supported by the numerical results below. We now ask 
whether the asymptotic behavior will be changed by the approximation. 
The maximum degree of z for the terms in the summand can be calculated 
from Eq. (16). The maximum degree of h~ u(z), u'(z) and U~ z) 
cannot be larger than 2 L -  1, 4 L -  2, 2L, and 2 L -  2, respectively. In the 
sum, the term containing ui(z) contributes for n ~< i(2L - 1 ) + 6 L -  3. 
Therefore, the "terms for which the eigenvalue approximation is not valid 
( i<  io, and io is finite) give a contribution only up to finite time, and will 
not change the asymptotic behavior. Thus, 

H+(z) ~ ~ 2i(z) �9 [h+(z) u'(z) P~~ z)] 
i = 0  

(32) 
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The product h'+(z)u'(z)P~~ z) is also a polynomial of finite order, and 
ignoring the product changes only the amplitude of the asymptotic 
behavior. We thus arrive at simple expression 

I ~. 2'(z) (33) 
H+(z) ~ 1 -2(z----~ i=o 

We define the coefficient of the z j term of 2(z) to be cJ. We can inter- 
pret 2(z) as a generating function for a random walk process--the 
probability to jump j steps forward is given by the coefficient c). The 
fraction of random walkers which survive after one step is s,, = 2( 1 ). The 
average displacement after one step is s ~ -  2'(1)/2(1), and the average of 
the square of the displacement after one step is s 2 - 2 " (  1 )/2( 1 ), where 

d 2'(z)=z ~z;~(z) 
(34) 

;o"(z)=[ zd]2;,(z) 

We also define the variance a 2-- s [ -  s2. Following the interpretation, the 
coefficient c] of the z j term for 2~(z) forms the distribution of the displace- 
ment of the random walker after i steps. The fraction of random walkers 
which survive for i steps is si,, the average displacement is is1, and the 
variance is ia 2. Since the second moment s2 is finite, we can apply the 
central limit theorem. Thus for large i, the coefficient c] becomes 

(2ru~--') 1/2 exp 2ia-" (35) 

Substituting this into the equation for H+(-), Eq. (33), we obtain 

H'+~ ~ s'~ [ (rt ~ isl )2.] 
i=o ( 2nia2)l/2 exp 2ia'- J (36) 

which can be evaluated by the method of the steepest descent to be 

,, [ n 1-1nSo.(a/Sl)2/2] 
H+ ~exp  lnso - . . . . . .  [ sl 1-1nso . (a /s l ) -  J 

~exp [  - c (L )n]  (37) 

where c(L) is a size-dependent decay constant. Even though the equation 
is derived for the + / -  model, its derivation only assumes the existence of 
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the half-space Green's functions similar to Eq. (16). Since these fimctions 
exist for the most general situation of the two block system, the asymptotic 
distribution is always simple exponential. Below, we compare the above 
results with an exact enumeration method, and find good agreement. 

3.3. Est imat ion  of the  Eigenvalue 

The problem of finding the asymptotic behavior of the first passage 
time distribution is reduced to finding 2(--), the largest eigenvalue of the 
operator u(z). Unfortunately, there is no known method to calculate the 
analytic expression of the eigenvalues of an arbitrary matrix, and the com- 
plicated structure of u(-) does not help matters. We present two methods 
to estimate 2(_-). These methods are not expected to produce exact numbers, 
but are intended to give some idea of the parameter L-dependences of the 
first passage time distribution. 

The first method is to express 2(--) in terms of the average of the 
elements of u(z). We start from the matrix T+(z)g"_(--), whose largest 
eigenvalue 2+(z) is approximated as 

1 L - - I  L - - I  

2 +(z) ~ 2L _~----- ~ ~,, ~, (T+(z)g'_(z)) ....... , (38) 
x = - - L + l  x ' =  - - L + I  

where 2L - 1 is the size of the matrix. This approximation is motivated by 
the numerical fact that the eigenvector v+(-)  corresponding to 2+(z) is 
close to being uniform, i.e., (v+(--)).,. = vo(z) for all x. Note that if the eigen- 
vector is uniform, Eq. (38) becomes exact. We then obtain 

2+(z) 2L- -1  ( 2 L -  2) 

- -  ( 2 L - 2 k - 2 )  - (39) 
+ 2 L -  1 k=J k +  1 

The expression can be further simplified to 

)~+(--) ~ 2"~ (47z) 1/2 k = ! L Z) (40) 

where we assume L~> 1. The largest eigenvalue 2_(z) of the matrix 
T_(z) g+(z) can also be estimated by the same method. It turns out that 

2_(z) ~ 2+(z) (41) 

The matrix u(z) is given by the product of the two matrices T+(z)g~ 
and T_(z)g'+(z), We further approximate the largest eigenvalue of the 
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product of two matrices as the product of the largest eigenvalues of the two 
matrices, which implies 

2(z) ~ 2_(z) 2+(z) ~ 2+(z) (42) 

We calculate 2+(1), 2+(1 ), and 2'+(1 ), where the primed values are defined 
in the same way in Eq. (34). By evaluating the integral in Eq. (40), we 
obtain 

2'+(1)~3-~L'/2+(1---~)+(9(1 ) (43) 

2 + ( 1 ) ~ 8  L3/2+ 15 v/-~ (~ 3 ~ ) +  (_9 ( 1 )  

The second approximation method is based on the interpretation that 
2(_-) is related to a certain generating function for a random walk. Consider 
the matrix T_(1) g'~.( 1 ). The matrix gives the probability to reach points on 
y = 0, starting from points on y = 1 with an absorbing boundary at y = 0. 
Thus, 2+ (z) is roughly the generating function of the hitting probability on 
the line y = 0 for a walk starting from y = 1. For simplicity, consider a 
walker starting from (0, 1). Since the only effect of convection in the x 
direction is to remove all the walkers which do not reach y = 0 until time 
step L, we only have to deal with a one-dimensional problem. The corre- 
sponding one-dimensional problem is treated by ignoring the x axis and 
limiting the maximum time step to be L. Then 2+(z) is 

f 
L 2 n 

2+(:)  ~ dn~(1 - e  -8/') (44) 
1 ~znnj ' 

where the integrand is the flux to y = 0  at step n, and we have 
approximated the sum by an integral. The eigenvalue 2+(1) is 

~ 1 _ e _ S / , ,  ) ~- 1 _ e _ S / , ,  ) 2 + ( 1 ) ~ f ,  dn~(1 -fz dn~(1 (45) 

The first integral is the probability to hit y = 0 during an infinite period of 
time, which is unity. After simplifying the second integral for L >> 1 we have 

16 
- -  L - I / 2  (46) 2 + ( 1 ) ~ 1  (2~)1/2 
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The second approximation, compared to Eq. (43), has the same dependence 
on L, but different numerical coefficients. This supports the previous sugges- 
tion that the coefficients obtained by these methods are not reliable. 
However, the fact that two very different methods give the same dependence 
on L gives some support to the validity of the form. The leading term 
in 2+ (1), which is the value of 2+ (1) in the limit L---, ~ ,  deserves special 
attention. It is the probability that an unbiased random walker hits the 
y = 0 line during an infinite period of time, which is equal to unity. Even 
in the case that the matrix is applied to the exact eigenvector, the random 
walker eventually has to be absorbed at the y = 0 boundary for L ~ oo, 
implying 2.+(1) = 1. Therefore, we set limL_ o~. 2+(1) = 1 from now on. 

We now proceed to calculate c(L).  The expressions for so, s~ and s2 
can be obtained from Eqs. (43) and (42): 

So~2+(1)  m 1 ~ + 0  

2+(1) 8 L~/z + d)(1) 
sl ~ 2  2+(1)-~ 3 x /~  

2.'+(I) (2+(1 ) '~z~  16 LS/2 
s2 ~ 2 2.-~-) + 2 \ 2 + ( 1 ) J  - 15 ,,/~ +~O(L) 

16 L3/~ 

Finally, we can calculate c(L)  using the definition in Eq. (37), 

c(L)  - - - -  
In so 1 - In So(a/sl)2/2 

s, 1 - l n s o ( a / s l )  2 

(47) 

39 
~ - - L  -~ (48) 

32 

3.4.  N u m e r i c a l  C h e c k  

We have calculated the decay constant c(L)  in three major steps. First, 
we expand H~.(z )  in terms of the number of times a random walker has 
crossed the interface [ Eq. (31)]. We then calculate its asymptotic distribu- 
tion in terms of the eigenvalue 2(z) with the help of the central limit 
theorem [Eq. (37)]. We then estimate 2.(z) and c(L)  [Eqs. (47)-(48)]. 
In this section, we check the validity of these results by comparing them 
with those of numerical simulations. It will serve as an intermediate check 
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before we proceed to a more general situation, where we will continue to 
use the methods developed above. 

We start with the exact sum, Eq. (31). We calculate the first few 
moments of H+(z) from the equation, which are easier to compare. The 
zeroth moment H+(1)  is rather easy to evaluate. Consider the ith term in 
the sum. We just have to calculate the product h+(1)u(1)  (2i+2) Pi, (1, 1), 
where we know all the individual terms. Furthermore, the (i + 1 )th term can 
be obtained by replacing Pin(2i+2)( 1, 1 ) by -i~(2i+4)/| . . . .  1 )=u(  lx; -inla(2i+2)[l',', l) .  
We sum these terms in the increasing order of i, until the magnitude of the 
new term is smaller than a certain value, which is chosen to be 10 -2~ The 
higher moments are slightly more complicated to calculate. Consider again 
the ith term in the sum. The first moment can be calculated by using the 
chain rule 

[h%(:) u(z)  12,+2~ Pin  (1 ,  z ) ] '  

. . . .  o(2i+21rl z ) +  (z)u'(z) (2~+21 = h + ( ' - )  u(-7) - i  . . . .  h"+ Pin  (1 , - )  

p,(2i+2){ | -'1 + h%(z) u(z) - i  . . . . . .  (49) 

where the primed values are defined in the same way as in Eq. (34). Also 
the (i + 1 )th term can be obtained by replacing 

p ( 2 i + 2 ) ( l  . )  rJt2i+4)t  1 i . . . . . .  - '~'-r'in t ,L 'Z)=ll(2)ptEi+2)(l in , . ,  2)  

Pi(nEi+21(1, 2 ) -* - - inP ' tE i+41t l ,2 )=U' (  z ) ,  Pin(2i+ 2) ( 1, 2) -t- u(.~) --mP'(2i+E)t, l,  2) 
(50) 

Higher-order moments are calculated in same way with the heavy use of 
the identity 

k = 0  
(51) 

where A(")(z) is the nth derivative of the function A(z). We compare the 
first five moments with those obtained by an exact enumeration method 
(see, e.g., ref. 15). For several values of L = 10-100 and several initial con- 
ditions, the values obtained by the two methods are essentially identical. 

We check the next step, the asymptotic form of the hitting probability 
distribution, Eq. (37).  The form is simple exponential, and the decay con- 
stant c(L) is given in terms of 2(z). We directly calculate the distribution 
H~_ by the exact enumeration method for L = 10-300. In Fig. 2, we show 
the distribution for L =  100. It is clear that H% is an exponential after 
some transition period. This is also true for the other sizes we have studied, 
and the length of the transition period is of the order L. 
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t ion .  A n  e x p o n e n t i a l  b e h a v i o r  in  t he  a s y m p t o t i c  r e g i m e  is ev iden t .  

We check the value of the decay constant c(L). Since the theoretical 
value of c(L) is given in terms of 2(z), we have to know the value of 2(z) 
in order to compare. To calculate the eigenvalue numerically, we go back 
to the discussion in the previous paragraph about calculating the moments 
of H+(z). We consider 2(1) first. Since the matrix u(1 ) has been repeatedly 

(11+2} applied to the vec to r  Pin (1, 1) to obtain (2i+4) Pin (1, 1), we have 

),(1)= lim p!2i+4)(1 1Vp!2i+2)r 1) (52) 
- - i n  �9 - ~ - t t - - l n  x 

We find that the ratio hardly changes for i > 50, so we take the ratio at 
i = 100 as ),(1 ). For higher moments, start from the relation 

)`(z) lim (2i+4} .r)/p!2i+2)( = Pin (1, 1, =) (53) " , l - - i n  
i ~ o c ,  

Taking the derivative and multiplying by = on both sides, we obtain 

p(2i+2)(1 1 ) - - - - i  . . . .  D ' ( 2 i + 2 ) f l  I )  ainDt(2i+4)/|~ ,, 1)_i  n ,- ,  p(2i+4)(1 1)~i n ~ ,  
),'( 1 ) ---- lim (54) 

,~o~. [pl~'+2)(1, 1)] 2 

The higher-order terms [e.g., ),"(1)] can be calculated in a similar way. 
Finally, using these ),(1), ),'(1), and ),"(1) we calculate the decay constant 
c(L) from Eq. (37). In Fig. 3, we show the values of c(L) just obtained as 
well as those obtained by numerical simulations, for several values of L. 
The simulational values are obtained by least-square fitting the last one- 
half or one-third part  of the numerically obtained H'+,  like the one in 

822/79/5-6-8 
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Fig. 3. The decay constant c(L) for the + / -  model given by the eigenvalue approximation 
(solid line) compared to the value obtained by the exact enumeration (diamonds). 

Fig. 2. There are in general good agreements between these two values 
except for very small values of L, where several approximations made to 
get the theoretical value may not be justified. 

We proceed to the last step of the calculation, the estimation of the 
decay constant c(L). In Fig. 4, we show the values of c(L) given by Eq. (48) 
and those obtained by the exact enumeration. The values by the enumera- 
tion are identical to those shown in Fig. 3. It is clear that the numerical 
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Fig. 4. The decay constant c(L) for the + / -  model given by Eq. (48) (dashed line) and that 
obtained by the exact enumeration (diamonds). 
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data show the 1/L behavior as predicted by the theory. On the other hand, 
the measured prefactor ( ~  1) is a little smaller than the predicted value 
(39/32). These are all in accord with the expectation that the prediction of 
the 1/L dependence is reliable, but that of the prefactor is not. It is 
unexpected that the value of the prefactor obtained by the enumeration 
method is so close to that of the theory. 

We have checked the steps to reach the decay constant c(L). The 
errors involved in the eigenvalue approximation are well controlled, and 
the approximation seems to be well justified for obtaining the asymptotic 
properties. Even though we do not have the same level of rigor in estimating 
the eigenvalues 2(z), we still have enough control to predict the correct 
dependence of L. 

4. THE GENERAL ANTISYMMETRIC  MODEL 

Having obtained a reasonable understanding of the asymptotic 
behavior of the + / -  model, we turn to the general antisymmetric model. 
We now allow an arbitrary horizontal bias 0 ~<p~" ~< 1, and due to the sym- 

u metry in the system, we can restrict ourselves to Px ,-" 1/2 without loss of 
generality. 

4.1. The Diffusive Limit: pU= 1/2 

We consider the antisymmetric model with no bias (p'~= 1/2), first 
using the formalism developed for the + / -  model. We now have a 
different operator u(z), and therefore a different eigenvalue ).(z). The 
asymptotic distribution of H'~_ is still a simple exponential, and the decay 
constant c(L, pi~ ,) is given in terms of 2(z) [Eq. (48)]. In Section 3.3 one 
estimate was based on transforming the problem into a one-dimensional 
diffusion problem with an absorbing boundary. In the transformation, one 
determines the average time required for the particles to be absorbed at the 
external boundaries at x = ___ L. In the + / -  model, the transport in the 
horizontal direction is a purely convective process, so that the time is iden- 
tical to the length L. Now, the transport in the horizontal direction is 
purely diffusive, so the time is 2L 2. Substituting into Eq. (48), we obtain 

,, 29 
c(L,p,~) ~ - ~  L -2 (55) 

The  L -2  dependence is also consistent with the calculation for the one- 
block case with no convection. In Fig. 5, we plot c(L, p~) determined by 
the above equation as well as those determined by the exact enumeration. 
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Fig. 5. T h e  d e c a y  c o n s t a n t  c(L,p~) for  the  a n t i s y m m e t r i c  m o d e l  wi th  p . ~ =  1/2 g iven  by 

Eq. (48) (solid line) and that obtained by the exact enumeration (diamonds). 

The numerical data clearly show the 1/L 2 dependence with the prefactor 
about twice that given in Eq. (55). 

A more direct check of these results is obtained by noting that in this 
case we are considering pure diffusion in a two-dimensional strip of 
width 2L, and one expects an exponential decay of tracer concentration 
with a time constant O(L2). More precisely, a straightforward solution 
of the diffusion equation for this geometry in Appendix B gives H, + ~ 
exp[ - (n2 /8L2)n ] ,  in good agreement with the above simulation. 

4.2. The Neighborhood of p ~ =  1 

It is useful to consider explicitly the case p~" = 1 - e to first order of e, 
where the formalism developed for the 4 - / -  model can be used with only 
minor changes. Starting from the master equation (1), it is straightforward 
to show that the half-space Green's functions f + ,  gh_ of Eq. (16) must be 
modified to 

- x ' +  y -  y ' ) /2J  - \ ( x -  x '4 .  y - y ' ) / 2 J J  

x x + 2  

+ ( x - x '  + 2 ) e  
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~'( x - - x ' + 2  2)/2) x ( \ ( x - x '  + y -  y' + 

_( )} 
(x - x '  + y + y' + 2)/2 

y ,x ,  y',z)=(1 (x ' -x )e)  

x {((x,  x ' - x  
- -x+y- -y ' ) /2 ) - - ( (x '  

+(x ' - -x+ 2) e ( 2 )  ' ' -  x +-" 

(56) 

x,_x )} 
- x + y - y '  - 2 ) / 2  

- x + y - y' + 2 ) /2 , / -  ((x '  - x + y + y')/2,1 J 

of order e 2 are ignored. The above equation reduces to where terms 
Eq. (16) for e = 0, which suggests that the perturbation is not singular. The 
eigenvalue 2(z) for the matrix u(z) can be obtained by following the same 
procedure as in the + / -  model. We first calculate the eigenvalue 2+(z) of 
the matrix T_(z) g+(z), 

2+(z)-2+(z)l~=o 

+ 2 s  -- k 1 (57) 

where 2+(z)1~=o is the value of 2+(z) at e = 0 ,  and g+(z) is defined as in 
Eq. (27). Replacing the sum by an integral, we obtain 

2 + ( 1 ) ~  1 - - 7 ( 1 - - e )  L- tn+( .0  

2+(1) ~ 3 - - ~  (1 +e)  L~/a+(.o(1) (58) 

8 2~_( 1 ) ~ ~ ( 1 + 3e) L 3/2 + (9(L 1/2) 

where we have set limL_~. 2 + ( 1 ) =  1 as discussed above. Similarly, the 
eigenvalue 2_(z) of the matrix T+(z)g~ is determined to be 

2_(z) ~ 2+(z) (59) 
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Fig. 6. The normalized decay constant c(L, pi~) for the symmetric model predicted by the 
theory (solid line), and data obtained by the enumeration for L = 100 and several values of 
PI~ (diamonds). There is good agreement even down to pi'= 0.65. 

Combining these relations, we can write the eigenvalue ),(z) as 

2(:)  ~ / l  _(z) ~ + (:)  ~ )~2 (z) (60) 

F rom 2(z), the decay constant c(L, PI~) is determined to be 

, 39 
c(L,p., .)~-~(1 - 2 e )  L - '  (61) 

which is the same as the e = 0  result aside from the factor 1 - 2 e ,  whose 
origin is easy to understand. When we estimate the eigenvalue by mapping 
into a one-dimensional problem, the average absorption time is required. 
For  pure convection, this time is the length L divided by the horizontal 
velocity. In general, this velocity is given by 2 p ~ -  1 -- 1 - 2 e .  Therefore, in 
the absence of  diffusion, c(L,p~) has to be modified by replacing L by 
L/(1 --2e), which is precisely what  we find by the expansion. In Fig. 6, we 
show c(L,p~.) for L = 1 0 0  and several values of PI,'-, where c(L, pi" ) is 
divided by the value at PI~ = 1. We also show the corresponding result by 
the expansion, Eq. (61). There is a good agreement between the two, and 
not only is the expansion valid near p'.,'. = 1 but there is no systematic devia- 
tion down to p~ = 0.65. 

4.3. Scaling Argument for General p~ 

The half-space Green's functions (16) have served as a starting point 
at -" in the calculation of  the decay constant px = 1 and its neighborhood. For  
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other values of  p','., unfortunately,  we are unable to find them in closed 
form. Al though we can still show that the asymptot ic  distribution of  H'~_ 
is a simple exponential ,  wi thout  explicit knowledge  of  the Green's func- 
tions, we no  longer can use the same method  to estimate the eigenvalue 
and the decay constant.  

However ,  since we k n o w  the behavior for the two extreme cases of  the 
antisymmetric model  (p~ = 1/2 and 1), we can try to bridge the gap by a 
simple scaling argument.  We propose  a scaling ansatz 

c(L,p,:)=L-:f(~--~) (62) 

where f ( x )  is a scaling function which satisfies 

f(x)~{lx ifif x>>lX'41 (63) 

where we have defined a crossover length L* = 1/(2pl ~. - 1 ). (Recall that the 
lattice spacing has been set to one.)  To verify that the ansatz is in accord 
with previous results, note  first that for p .~=  1, L * =  1, and since we are 
interested in L>> 1, (63) gives e(L,p~')~L-' as before. Next,  for p .~= 1/2, 
L * ~  oo and c(L,p-~')~L -2, again in agreement. Finally, for p i ' = l - e ,  
L * =  1 / ( 1 - 2 e ) ,  and for small e, L/L*>> l, so the decay constant  becomes  
( 1 -  2e)/L, which is exactly Eq. (61). To  verify the ansatz away from the 
limiting cases, we have used numerical  simulation. In Fig. 7, we show the 
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rescaled c(L, p~) obtained by exact enumeration versus, the rescaled L, for 
several values of L = 10-200 and PI" = 0.5-1.0. The data collapse onto one 
scaling curve, which approaches a constant as x --, 0 and is linear for large 
x, precisely as expected from Eq. (63). Thus the scaling ansatz provides an 
excellent description of the general antisymmetric model. 

5. C O N C L U S I O N S  

We have studied the first passage time distribution H~_ of a two-layer 
system of width L, and determined its asymptotic form to be a simple 
exponential decay in time. For the special case of an antisymmetric model, 
the decay constant is calculated using several techniques, and is found to 
cross over from the expected L -2 behavior in the pure-diffusion regime to 
an L-1  behavior at high velocities. 

The origin of the L -1 behavior in the convective regime is not 
intuitively obvious to us. It arises as the result of two contributions--one 
L -u2 factor from the In so term, and another L -1/2 factor from the 1~st 
term. As discussed in Section 3, So is roughly an eventual absorption 
probability of a one-dimensional random walk, and s~ is the mean distance 
traveled before the absorption. This differs from a naive expectation that 
the L -~ behavior results from the mean distance s~ behaving as L in the 
convective regime. 

Evidently, we have only considered the more tractable special cases in 
a two-layer system. It would be desirable to go beyond the antisymmetric 
limit of zero average velocity. In terms of the " u P.,.-Px plane, the antisym- 
metric model corresponds to the line p i ' =  1 _p.a, and the (elementary) 
one-block case to the line p".,.=px.-a Due to the symmetries, the remaining 
region is bounded by the two cases with 1/2 ~<Pl; ~< 1. Of course, one would 
like to consider convection in two directions as well multiple layers, but 
these rather more difficult problems must await further work. 

A P P E N D I X  A. ITERATIVE M E T H O D  FOR 
S H O R T - T I M E  B E H A V I O R  

We discuss an iterative scheme to obtain an approximate solution of 
the self-consistency equations (14)-(15), based on interpreting them as a 
recursion relation. We input a trial solution of P(x, O, z) and P(x, 1, z) to the 
equations and obtain a (hopefully) improved approximation. In principle, 
we repeat this procedure until it converges to the correct solution. 
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We start from a trial solution 

P(~ O, z) = 0 
(A1) 

P(~ 1, z) = 0 

where the superscript indicates the number of iterations. For simplicity, we 
set xo=O and yo= 1. As shown in Eq. (13), the hitting probability H+ is 
related to G+ via H+(z)= z G + ( L - 1 ,  1, =). Also, using Eq. (11), we can 
write G+(L- 1, 1, z) as 

L - - I  

G + ( L - - I , I , z ) = � 8 9  ~ : L - " ' ( P ( x ' + l , O , z ) - P ( x ' - l , l , : ) )  
x ' =  - - L +  1 

+ z  L-I  (A2) 

Combining these relations, we obtain 

Ht~ =z  L (A3) 

This rather trivial result is due to the fact that the presence of the second 
block is ignored in the zeroth-order approximation. 

The next-order values of P(x, O, z) and P(x, 1, z) can be calculated by 
inserting the trial values into Eqs. (14)-(15) to obtain 

Ul)(x, O, z )=0  

( 2 ) x (  x ) (A4) 
P(l)(x, 1, z) = x/2 

where we define (r~')-0, if x or y is not a nonnegative integer, or if x <y.  
Similarly, we obtain 

_t. l ' t -  ~ /2 H ~ I ( : ) = -  - - 5 "  x' (A5) 
x '  = 0 

Using Stirling's formula, and replacing the sum by an integral, we find 

H ~ ( z )  ~_ =L 1 - (A6) 

The above result is unphysical, since H+ becomes negative for large L. The 
deficiency is due to the fact that we only include the flux out of the upper 
block and not the flux #~to the block, while both fluxes are of the same 
order of magnitude. This problem will be resolved in the calculation at next 
order. The second-order iterations of P(x, O, z) and P(x, 1, z) are 
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L - - 1  Z 
PI2)(x, O, z ) = }  

x '  = m a x I x ,  1 ) 

(~Z_'yv'--x ( X t - -X  "~(z'~x'--I ( x ' -  I 

\2/ \ ( x ' - x ) / 2 J \ 2 J  \ ( x ' - -  1)/2,/ 

PI2)(x, 1, z) = x/2 

_ L  ~, ( x - x '  _ x'-.,.( x ' - I  
2 ,.,=, \ ( x  - x '  + 1 )/2 \ (x '  - 1 )/2J 

(A7) 

Again using Stirling's formula and replacing the sum by an integral, we 
obtain 

pi2)(x ,O,z)=l  fLma(lx dx, z2x,_x 1 
I t) [ ( x ' - - x ) ( x ' - - l ) ]  '/2 

piZ)(x, l, z) = z~, ( 2 " l  l/2_z" fX dx , 1 
\~zx/ it 1 [ (X--X' ) (x ' - - l )]  U2 

(A8) 

and HI+ ) becomes 

= z '  

.~L L-- I 1 

f, dx ( x _  1)1/2 

~L L-- I fly-- 1 1 
+~f i_  dx d x ' [ ( x _ l _ x , ) ( x ,  1)]l/2 

_ L  0 L - - I  

+ dx dx' z- -" 
-- --L+ 1 1 [ ( x ' - x -  1)(x--  1) I/2 

.~ fL--1 fL--I 1 + dx dx' z 2''' -2.," 
1 y+l [ ( x , _ x _ l ) ( x _ l ) ] l / 2  (A9) 

Although the integrals in the equation cannot  be evaluated in closed form, 
we can understand their structure. The first term is the contribution of  
tracer which did not cross the boundary.  The second and the third terms 
are amount  of flux going out of  the first block. Thus, these three terms are 
proport ional  to z L. The fourth and fifth terms are contributions from 
walkers which return to the upper block. Since the time to reach the 
boundary  (x = L) depends on the where the walker exits (x ')  and reenters 
(x) the upper block, these terms contain different orders of  z. 
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APPENDIX B. THE SINGLE-LAYER SYSTEM 

To provide some feeling for the more difficult case of a nonzero 
average velocity, we calculate the first passage time distribution for a single 
layer. Consider tracer moving between adsorbing boundaries at x = + L in 
the presence of a constant velocity field v~. The motion in the y-direction 
is simple diffusion, completely decoupled from that along x, and the 
problem effectively is one-dimensional. We have 

Oc Oc 0% 
-~+V-~x=D ~ with c(+_L,t)=O (B1) 

with the simple initial condition c(x, 0)=6(x) .  Taking the Laplace trans- 
form via I~  dt e-S', we have 

0C 02r 
sc -- 6(x) + v Ox = D c3~ (B2) 

which is readily solved for x # 0 as 

Here the superscripts refer to x > 0 and x < O, respectively, and we have 
defined p = vL/2D and a = sL'-/D. The coefficients A • are determined by 
the conditions c + = c  - and O c + / O x - O c - / O x = - 1 / D  at x=O,  which 
follow from the differential equation, so that 

L 
A + = A - = 2D(p 2 + a) j/'- cosh[(p 2 + a) I/2] (B4) 

The Laplace transform of the flux leaving the system at x = -1-L, which is 
identical to the first passage time probability distribution, is 

Oc( +_L, s) e +-p 
J-+(s) = - D  Ox -2cosh[ (p2  +a) ~/2 ] (BS) 

The long-time asymptotic behavior of J+- is controlled by the rightmost 
singularities of the Laplace transform in the complex-s plane, in this case 
the poles where (p2+ a)l/2= +_ in~2 or s = s * =  - n 2 D / 4 L  2 -  v2/4D. Thus, 
for t ~  oo, J•  In the pure-diffusion limit, we set v = 0  and 
recall that D--  1/2 and identify t with step number n, so that H, +, = J+(n)~  
exp(--nZn/8L2). In the opposite limit of large velocity, we see that J§ 
exp(--vZt/4D), which coincides with the long-time behavior at a fixed 
spatial point of the usual Gaussian solution of the CDE. 
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